FUJIFILM

Verification of Healthcare Professionals

Thank you for visiting Fujifilm website.

The content on this page is intended for healthcare professionals or equivalent.
Please confirm that you are a healthcare professional.

You are accessing from the United States. To browse Fujifilm USA website, please click the following link.

Fujifilm USA Website

SCENARIA View Focus Edition - Overview

The 64ch/128slice CT system provides images with excellent visibility - even at low doses.

The content on this page is intended to healthcare professionals and equivalents.

Next stage to the future

For the future of clinical practice

Cardiovascular diseases are expected to see an even greater increase.
The importance of prevention, diagnosis, and treatment is further increasing to maintain the healthcare system and improve patients' quality of life.
To support such medical environment and deliver a more accurate, less invasive, and more efficient examination environment in the future, we have reached a new frontier in CT, combining Fujifilm's experience and AI technology.
That is SCENARIA View Focus Edition.

There is the logo of REiLI, which is Fujifilm’s medical AI technology brand here.

REiLI, FUJIFILM’s medical AI technology brand, enables support for physicians in the diagnosis and streamlining of the workflow for diagnostic imaging by combining the image processing technology we have cultivated with the most advanced AI technology to realize improved medical care.

There is an illustration depicting a scene where a patient is lying on the patient table, and a CT examination is about to be performed here.

Intelli IPV

Fujifilm's Experience and the Utilization of AI Technology*1 Enable Both Reduced Exposure and High Visibility

Intelli IPV is an image reconstruction technique developed with AI technology. Highly accurate processing has been speeded up by using images obtained through sufficient iterative processing as training data. Based on the Fujifilm's own Visual Model, reconstruction processing using raw data brings the NPS (Noise Power Spectrum) closer to FBP (Filtered Back Projection) and keeps the image texture, even at a high noise reduction rate. It also reduces image noise by up to 90%*2 and radiation exposure by up to 83%.*3 The ability of detecting low contrast is two times better at the maximality.*3

Achieved both radiation exposure reduction and visibility

Improved low-contrast resolution

Visual Model

A technology to control image noise and image quality through iterative processing based on Statistical, Object, and Physical Models.

There is the conceptual figure for Intelli IPV here.
Statistical Model

Reduces noise through statistical consideration of noise originating from X-ray detection and noise in circuit systems.

Object Model

Models change in morphological information, and maintains structure considering shape, size, and position of the structure.

Physics Model

Modeled after FBP, adjusting texture in equal ratio from high to low frequencies while reducing noise to achieve a texture similar to that of FBP.

Maintains a texture close to FBP

The noise frequency characteristics that affect visibility are now as close as possible to those of FBP while adjusting the texture in equal proportions from high to low frequencies.

There is a graph of normalized NPS for FBP image, conventional iterative reconstruction image and Intelli IPV image in each frequency band here.
  • *1 Intelli IPV was developed using Machine Learning, an AI technology. The performance and accuracy of the system do not automatically change after use.
  • *2 Compared to FBP. It was measured using Intelli IPV intensity level Strong5 and tested to a water phantom. Depending on the clinical task, patient size, anatomic location, and clinical examination, the effect obtained may be smaller.
  • *3 Compared to FBP. It was measured at 0.625 mm slice thickness using Intelli IPV intensity level Strong5 and tested to MITA CT IQ phantom CCT189, Phantom Laboratory using the model observer method results. Depending on the clinical task, patient size, anatomic location, and clinical examination, the effect obtained may be smaller.

IPV stands for Iterative Progressive reconstruction with Visual modeling.

SynergyDrive

More Accurate and Speedy Examinations for Everyone Involved in Clinical Practice

SynergyDrive is a new workflow solution for the age of AI, which was developed by Fujifilm with its long history of supporting team-based medical care.
The workflow supporting functions, which utilize AI technologies such as deep learning, help solve various issues in medical practice and contribute to increased efficiency and improved quality of medical care.

01

Examination order

02

Room entry

03

AutoPositioning*4*5*6

Technology developed utilizing deep learning*5 recognizes the position and characteristics of the patient on the patient table.
A single button push moves the patient table to the position for scanogram.

04

Scanogram imaging

05

AutoPose

The scan range can be automatically set by the scanogram image. It is expected to improve reproducibility of scan position and efficiency of examinations, contributing to time reduction.

The scan range can be customized according to the operation of the facility since the margin of the scan range can be set in advance. The operator can also check and adjust the automatically calculated scan range.*7

OM Line

SM Line Head

RB Line

Chest

Red: Position set automatically
Blue: Position set automatically + set margin

06 - 07

CT imaging (left)
Parallel storage of CT images (right)

Images generated through reconstruction are stored in the console and also in SYNAPSE 3D through parallel processing. This eliminates the step of sending DICOM images from the console, enhancing examination operability.

08

Home button: 
Remote return of the patient table

09

Analysis with SYNAPSE 3D

10

Images are displayed on the SYNAPSE 3D in the reading room

From ordering an examination to reading CT images, Fujifilm proposes to connect all steps of medical care involved in CT imaging to improve efficiency for medical professionals.

  • *4 AutoPositioning is an option.
  • *5 This function was developed by utilizing Deep Learning, one of the AI technologies. The performance and accuracy of the device do not automatically change after use.
  • *6 Since this function assists in moving the patient table for positioning, the operator needs to perform the final positioning and manually using a light projector (Light localizer).
  • *7 The scan range automatically calculated requires check and adjustment by the operator.
Manufacturer

FUJIFILM Healthcare Corporation