研究者へのインタビュー
今回は、京都大学工学研究科堀毛研究室で2020年に博士号を取得され、現在はオレゴン大学 Brozek 研究室にて JSPS 海外特別研究員としてさらに研鑽を積まれている門田健太郎博士にお願いしました。
門田博士が博士号を取得した堀毛研究室は、固体化学や錯体化学を用いて、金属と分子の両方を組み合わせて新たな材料を合成する研究室です。具体的には、金属-有機構造体 (MOF) をガラスや液体へ相転移することによる機能開拓や、イオンを高速伝導する結晶の合成などに取り組んでいます。門田博士は、このたび二酸化炭素を原料として新しい材料に変換する手法を開発し、その成果を J. Am. Chem. Soc. 誌に報告しました。その成果は、プレスリリースとして発表され、朝日新聞デジタル、マイナビニュースなどの一般メディア、さらには Phys. Org. などの海外ウェブメディアにも取り上げられ、世界的に注目されています。
One-Pot, Room-Temperature Conversion of CO2 into Porous Metal−Organic Frameworks
Kadota, K.; Hong, Y.-L.; Nishiyama, Y.; Sivaniah, E.; Packwood, D.; Horike, S.* J. Am. Chem. Soc. 2021, 143, 16750. DOI: 10.1021/jacs.1c08227
研究室を主宰されている堀毛先生より、門田さんの人物像についてコメントをいただいております。
門田君はずっと錯体/MOFの合成センスが飛び抜けていました。今回のCO2から作るMOFの他にも、ヒドリド(H−)からなるMOFなど、ユニークな物質がグローブボックス内に所狭しと並んでいたことを思い出します。コロナ禍で渡ったオレゴンでさらに逞しく、新しい研究の方向を私達に見せてくれると思います。
今回のインタビューでは、本成果に至るまでの裏話など、論文には語られない現場のリアリティをたくさんお話していただきました。それでは、インタビューをお楽しみください!
CO2は様々な環境問題の原因であるとされる「厄介者」である一方で、地球上に普遍的豊富に存在する「炭素資源」として捉えることもできます。しかし、反応性の乏しいCO2を有用な物質・材料に変換するためには、貴金属触媒や高温・高圧条件が必要不可欠でした。
私たちは、常温・常圧という温和な条件で、アミンを利用することでCO2から多孔性材料の一つである多孔性金属錯体(MOF/PCP)のone-pot合成にはじめて成功しました(図1)。合成したMOFは重量比で30%以上がCO2由来ですが、安定な細孔構造を形成しており細孔中にCO2やH2を貯蔵することが可能です。また大気中の希薄なCO2(0.04%)も応用可能で、乾燥空気から直接MOFを組み上げることもできます。
本研究テーマの着想時点から、ピペラジンが最も有望なのではないかと考えていました。これはCO2が反応したときにピペラジンの六員環構造により配位サイトとなるカルバメート部分が180度正反対に固定され、(MOFを作る従来の配位子と同様に)MOFの構造を規定しやすいのではないか、という予想に基づいていました(図2)。金属塩は一般的にMOFを組みやすいとされる第一周期遷移金属イオンから検討していきました。金属塩とアミンの組み合わせ自体はそれほど多くを検討することはありませんでした(20通り以下だと思います)。実際のところは、組み合わせよりも後述の合成条件の検討に苦労しました。
ピペラジンとCO2の反応から得られるカルバメート塩は、ネットワーク性の水素結合を持つため溶解性が極めて低く、MOF合成の出発物質としては使えませんでした(図3上)。DBUという非求核性強塩基を用い、カチオンの構造を変えることでこの問題を解決しました。DBUは、①ピペラジンよりもプロトンを受け取りやすく、②水素結合ネットワークを形成せず、③分子の対称性が低く溶解性を向上させ、④自身はCO2とは反応しないという四拍子が揃っていました(図3下)。この可溶性のカルバメート塩を用いることで、さまざまな合成条件でのスクリーニングが可能となり、最終的にカルバメート塩を単離せずともone-potで目的のMOFをCO2から直接合成することができました。
やはり一番の壁は目的構造を持つ結晶性MOFの合成でした。これまで90,000種以上のMOFが合成されてきましたが、CO2を原料に積極的に用いた前例は自身の前テーマ(K. Kadota et al., Chem. Commun. 2019, 55, 9283-9286.)を除いて全くなく、すべてが手探り状態でスタートしました。実験に着手してからの半年間は結晶性の化合物が全く得られず、苦戦していました(当時はビールや炭酸飲料の気泡を見てもCO2の反応のことばかりを考えていました)。この問題は「CO2とピペラジンによる配位子の生成」と「その配位子と金属イオンによるMOFの結晶化」の双方を同時に満たす条件を見つけられなかったためでした。そこで、これらの過程を分解して捉えることで問題解決を図りました。カルバメート配位子とクラスター錯体をそれぞれ個別に用意し、「お膳立て」することで後者のMOFの結晶化だけに注力し条件検討を繰り返しました(図4上)。100以上の失敗の末にダメ元で試した(MOF合成にはほとんど使われない)iPrOHを合成溶媒に用いた時に、予想通りの粉末X線回折パターンが得られ装置の前でとても興奮していたことを覚えています。その後、小川知弘 博士(現・バーゼル大JSPS海外特別研究員)から、「意外と単離せず単純に混ぜても反応が進むのでは?」という提案に半信半疑(半年間の苦戦からほとんど期待せずに)ながら乗っかったところ、これまでに最適化した条件下では簡単にone-potで合成できることがわかり、とても驚きました(図4下)。
既存の考え方や枠組みに捕らわれない視点を持ちながら、自分の色が出ている研究ができたらないいなと考えています。今回のテーマにおいても、MOFの分野においてCO2は十数年間「吸着する対象」であり、決して「原材料」として捉えられることはありませんでした。昨年学位を取得し研究者人生が始まったばかりですが、分野に新たな視点を与えられるような捻りの効いた研究ができるように精進していきたいと思っています。
本研究は自身の博士課程の研究の中でも特に思い入れが強いテーマなので、興味を持ってここまでお読みいただきましてありがとうございます。自分自身、日々勉強の毎日ですが、自分が面白いと思ったことに確信を持ち真っすぐ突き進むことと、いろいろな人と話したり相談したりして柔軟に意見を取り入れることの剛柔のバランスが充実した研究生活には大切なのではないかと思います。
最後になりますが、本研究でご指導いただいた堀毛先生、共著者の方々、研究室メンバーの方々、京都大学高等研究院iCeMSの皆様にこの場を借りて厚く御礼申し上げます。また、このような機会を与えてくださいましたChem-Stationの方々にも感謝申し上げます。
名前:門田 健太郎 (かどた けんたろう)
所属:University of Oregon, 日本学術振興会(JSPS) 海外特別研究員
略歴:2014年3月 京都大学 工学部 工業化学科修了。
2017年3月 京都大学 工学研究科 合成・生物科学専攻修了。
2018年4月―2020年3月 JSPS 特別研究員(DC2)
2020年3月 京都大学 工学研究科 分子工学専攻博士課程修了。
2020年4月―8月 京都大学 高等研究院iCeMS博士研究員
2020年9月―2021年3月 University of Oregon, 博士研究員
2021年4月―現在 University of Oregon, JSPS 海外特別研究員